加工定制是
材质铸铁铸钢 球铁 不锈钢
电机结构卧式
驱动方式电动
叶轮数量单级
性能耐高温
叶轮吸入方式单吸
防护等级ip54
输送介质热水
介质温度类型0-200摄氏度
额度流量Q20-300 m3/h
额定扬程H0-80
叶轮级数单级
吸入方式单吸泵
壳体形式导流壳
泵轴位置卧式泵
结构类型离心泵
热水泵 由流量Q确定水泵扬程
流量计将测得的水泵流量Q反馈给控制器,控制器根据H=H0+S•Q2确定水泵扬程H,通过调速使H沿设计管路特性曲线移动。
但在生产实践中情况比较复杂。对于单条管路输水系统,是可以得到与之对应的一条管路特性曲线的。而在市政供水管网中,则很难得到一条确定的管路特性曲线。在实践中,只能根据管网实际运行情况,通过尽时能接近实际的假设,计算出近似的管路特性曲线。
由不利点压力Hm确定水泵扬程
即需在管网不利点设置压力远传设备,并向控制室传回信号,控制器据此使水泵按满足不利点压力所需要的扬程运行、由于管网不利点往往距离泵站较远,远传信号显得不太方便,而且,在市政供水系统中,由于管网的调整,用水状况的变化等随机因素的影响,都会使实际不利点和设计不利点发生一些偏差,给变压供水的实施带来困难。
5 结论
①变频调速是一种应用广泛的水泵节能技术,但却具有较为严格的适用条件,不可能简单地应用于任何供水系统,具体采取何种节能措施,应结合实际情况区别对待
②变频调速适用于流量不稳定,变化频繁且幅度较大,经常流量明显偏小以及管路损失占总扬程比例较大的供水系统。
③变频调速个适用于流量较稳定,工况点单一以及静扬程占总扬程比例较大的供水系统。
④变频变压供水优于变频恒压供水。

热水泵汽蚀严重的解决办法
正常情况下,水温越高,水越容易气化,气体越多越容易在管道里面形成气蚀,从而引起泵产生噪音和震动,气蚀严重时,泵的流量、压力及效率的显著下降,甚至不能正常上水,导致泵空转 干烧,直接损坏水泵。显然,汽蚀现象是离心泵正常操作所不允许发生的。避免汽蚀现象发生的关键是泵的安装高度要正确,尤其是热水泵在输送温度较高的易挥发性液体时,更要注意。
热水泵的安装高度Hg
允许吸上真空高度Hs是指泵处压力p1可允许达到的大真空度
而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为1.013×105Pa时的值,当操作条件及工作介质不同时,需进行换算。
(1) 输送清水,但操作条件与实验条件不同,可依下式换算
Hs1=Hs+(Ha-10.33) - (Hυ-0.24)
(2) 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H΄s

热水泵阀门和表盘电流的一些顽固问题怎么解决
打开阀门电流应该会、关闭阀门电流减少;可能原因看你的阀门开度和表盘显示可能不一致。
关于水泵问题、建议测下流量、出口压力换表测量下。再与水泵参数进行对比。
打开阀门电流应该会、关闭阀门电流减少;可能原因看你的阀门开度和表盘显示可能不一致。油库新建一消防泵房,新安装四台消防泵,一台泡沫泵,两台清水泵,一台备用泵。平时用的只有清水泵,两台泵的参数型号一样,离心泵,额定扬程120m,额定出口压力1.2MPa,流量100L/s,电机额定电流322A,功率185KW。消防泵主要用于油罐冷却喷淋。喷淋水出口离泵地面高15m,泵进口水源引自一台水罐自压供水,水罐液位高10m。进水管DN250,出水管DN300
体泵的型号和曲线没有。根据以上反映情况,这台泵应该是高比转数的泵,和混流泵的曲线相似。那么这种情况是很正常的。阀门开得越大压力越低,但流量其实更大。阀门开得过大时,泵出口压力低于你要求的压力,是因为管路阻力小于泵的扬程过多。这个情况使用是完全没有问题的。因为泵的出水量将远超过你要求的流量,还不超功率,对消防有利。(一般离心泵要求关闭阀门启动,混流泵必须开阀门启动,混流泵关阀启动电流会很高)
水泵阀门和表盘电流的一些顽固问题怎么解决:
启动时关闭出口阀,在出口阀未开时候压力达到1.6MPa。然后慢慢打开出口阀,此时出口压力随出口阀的打开而减小,并且电流降低。当全开出口阀时,压力只有0.3MPa根本满足不了我们消防要求,且此时电流小,比额定电流小。此时我们逐步关小出口阀,压力随之升高,电流。当压力达到0.6mpa时,电流开始超过额定电流。继续关阀,压力、电流都继续提高,当压力达0.8MPa时,此时出口阀基本已经关得所剩无几了,且电流达到350a远超过额定电流。此状态运转7分钟或更短会出现软启动器“过热跳闸”或“过载跳闸”,电机发热。
总之是出口阀,压力下降,但是电流反而减小,且当出口阀全开时,电流反而很小,小于额定电流。反之出口阀减小,压力升高,但是电流,超过0.6MPa时会出现电流过大,电机过载。

机械损失,通常是液体与叶轮和泵室的前、后盖板的外表面之间的摩擦损失(也称为圆盘损失),光盘损耗占很多一部分,甚达有效功率等级的30%,试验表明,圆盘损失与转速的三次幂成正比例,与叶轮外缘直径的五次幂呈正向比例,从此,叶轮外圆直径越大,圆盘损失越大,尽管圆盘损失与转速的三次幂成比例,但在给定的升力下,伴着转速的增长,叶轮的外面直径相应减小(可以认为泵的转速加倍,叶轮的外圆直径减小三分之二),圆盘损失与五次幂成比例减小,从而因此,伴着转速的普遍增多,盘片损耗并没有减少而是减小,这是开发高速泵的原因之一。
http://www.csdfgyb.com