D6-25*4 矿山排水泵 更耐用
  • D6-25*4 矿山排水泵 更耐用
  • D6-25*4 矿山排水泵 更耐用
  • D6-25*4 矿山排水泵 更耐用

产品描述

水量2-200M3/H 移动方式底座固定式 额定转速2900r/min 级数多级 汽蚀余量4M 结构原理离心式 电压380V 驱动方式电动 输送介质 叶轮结构封团式 叶轮吸入方式单吸式 工作原理高山送水排水抽污 矿山油田 城市工程给排水 加工定制 输出功率12-1000kw 颜色其他 叶轮数目多级 公称排量6-650mL/h 输入功率12-1000kw 出口直径40-200mm
级离心泵的抗堵塞性能为什么会被越来越看重?这主要源于两方面原因:一是腐蚀性液体处置费用的增高。工业企业努力降低单位产品生产的耗水量,这使腐蚀性液体中固体物质和纤维的含量越来越高。二是多级离心泵越来越多地采用了节能的手段,就是转速调节的驱动方式,而转速调节却不能保证多级离心泵会不会堵塞。
针对异物经常堵塞机泵叶轮的问题,设备运行初期采用有堵塞就通。但经常拆卸泵体,造成机泵口环等部件的磨损加剧同时每次清堵耗费大量人力。为改变这种状况,在机泵进水管处加装碳钢阻污箱,并呈45。倾角。箱内使用过滤网用来再次过滤杂质,减少堵塞发生的几率。
上述解决方案实施后,人力消耗得到缓解。但部分腐蚀性液体及杂质在死角积聚后,在清理中易造员的轻微气体中毒伤害,不利于安全作业。因此必须更换方案,以确保更好的维修效果。
多级离心泵转子叶片的形态分为两种,分别为旋流式叶片和切削式叶片,旋流式叶轮并不在被输送的介质中运动,把需要泵送的介质引导到泵腔中,被泵送的介质从叶轮旁流过。这样,被泵送的液体介质中的长纤维或者固体物质也一起被泵送出去。而切削式叶片,能将较大的块状固体物质切碎,从而不再堵塞。
D6-25*4
多级离心泵偶尔会发生一合闸即跳闸的问题,并无任何信号继电器掉牌。在排除了开关机构故障后,按常规方法检查电缆、二次回路接线和各继电器及其定值都正常,再次启动又往往成功。后怀疑是dcs系统软故障造成的,但改在控制盘上操作,仍会出现此现象。
为查清楚此现象的原因,观察开关合闸过程中各表计的变化情况,以确认是何原因使其跳闸。试验其中电压表监视微机跳闸回路,毫安表监视差动继电器1cj、2cj动作情况,电流表监视热工保护回路。接好表计后,启动给多级离心泵,经过一段时间的试验,终于有一次
一启动即跳闸,同时观察到毫安表的指针偏转了一下,其它监视表计没有反应,新换上的xjl-0025/31型集成块式信号继电器1xj亦动作掉牌,表明是由差动保护动作导致跳闸。
差动保护动作,首先怀疑被保护设备内部有故障。通过常规检查,多级离心泵电机及其电缆正常,差动继电器校验正常,电流互感器极性连接正确。在排除设备故障和接线错误的原因后,差动保护在电机启动过程中动作,表明在这过程中差动回路的差电流超过差动继电器整定值。正常情况下引起差动回路差电流的原因主要有两点:一是电机首尾两侧的电流互感器变比误差不同,存在一个很小的差电流,这个差电流小于电机额定电流id的5%。二是首尾两侧电流互感器二次负荷的差别也会引起其变比的差别,从而存在一个差电流。在多级离心泵电机差动保护回路中的电流互感器负荷差别只是二次电缆长度的不同,大约相差50m,并且在额定电流下,差动继电器的功率消耗不大于3va,二次负载并不重。检查发现给多级离心泵电机差动保护用的首尾侧电流互感器型号均为lmzbj-10,b级15倍额定电流,变比600/5,容量40va,完全能满足二次负载的要求。
4:以析是基于正常运行的条件下,在电机启动时,情况又有所不同。电机启动时电流很大,首尾两侧的电流互感器可能饱和,此时由于各电流互感器磁化特性不一致,二次差电流可能很大。根据阿城继电器厂的lcd-12型差动继电器整定说明,继电器的动作电流整定值izd=△i1kkin/n=0.063356/120=0.534a式中:△i1首、尾端电流互感器正常运行时的大误差,0.04~0.06;kk可靠系数,2~3;in电机额定电流;n电流互感器变比。应整定在1.0a的位置。在使用b级互感器的情况下,差动继电器动作电流整定在1.5a,制动系数为0.4时,差动保护在电机启动时仍偶尔会动作,是由于b级电流互感器磁化特性饱和点较低,抗饱和能力较低,不能满足差动继电器的要求。通常要求差动保护回路的电流互感器采用d级,d级互感器的饱和点高一些,没那么容易饱和,可以减小电机启动时流过差动回路的差电流。在更换为d级的电流互感器,同时把差动继电器动作电流整定在1.0a,制动系数为0.4后,再没出现过开关一合闸即跳闸的故障。
D6-25*4
合理地设计轴向力的平衡装置,消除轴向窜量。为了满足这一要求,对于多级泵,比较理想的设计方案有两个:一个是平衡盘加轴向止推轴承,由平衡盘平衡轴向力,由轴向止推轴承对泵轴进行轴向限位;另一个是平衡鼓加轴向止推轴承,由平衡鼓平衡掉大部分轴向力,剩余的轴向力由止推轴承承担,同时轴向止推轴承对多级泵轴进行轴向限位。种方案的关键是合理地设计平衡鼓,使之能够真正平衡掉大部分轴向力。对于其它单级泵、中开泵等产品,在设计时采取一些措施保证泵轴的窜量在机械密封所要求的范围之内。
D6-25*4
当输送介质勃度一时,使用以上公式设计叶轮出口宽度可使多级泵保持较高的流量和效率。叶片型线的影响叶片型线是多级泵叶轮流面与叶片厚度中分面的交线,它是通过改变叶片表面流体动力负荷来决定多级泵水力性能的重要几何参数。它取决于叶片进口角叶片出口角和叶片包角。叶片进口附近型线对多级泵性能有一定影响,适当叶轮后盖板流面上的叶片流体动力负荷有助于提高泵输送戮性介质时的水力性能。这里引人负荷系数的概念加以说明。叶片压力面与吸力面的压差越大,叶片对流体作功越多,压力面相对流速就越小,这时逆压力梯度,容易引起脱流。不同流面上的负荷系数不同,则不同流面上叶片对流体的作功也不同。
后盖板流面上大叶片负荷系数与相同半径处前盖板流面上负荷图叶片扭曲度五叶片出口角的影响叶片出口角对石油化工多级泵的理论研究在国内外还是空白,当前也于通过试验进行定量分析。叶片出口角对多级泵性能的影响程度随输送介质戮度范围不同而改变。叶片出口角,能有效提高多级泵的扬程。输送高赫度介质时,大出口角叶轮的泵效率略高于小出口角叶轮的泵效率,且区的效率曲线比较平坦。但出口角对泵性能的影响受到一定限制,即对于高勃度介质,大出口角叶轮也阻止不了泵效率的急剧降低。使得大出口角叶轮的优势得不到充分体现。当输送介质赫度高达扩时,泵效及扬程都急剧降低。大出角叶轮的轴功率明显高于小出口角叶轮的轴功率。叶片数的影响叶片数对泵性能的影响是非线性的,若叶片数过多,则造成叶片摩擦损失,流道过流面积减少,效率下降,汽蚀性能恶化。
长沙东方工业泵厂 多年老厂 品质保证  信誉良好 服务客户
http://www.csdfgyb.com
产品推荐

Development, design, production and sales in one of the manufacturing enterprises

您是第3638240位访客

版权所有 ©2025-10-14 湘ICP备17020666号-3 长沙东方工业泵厂 保留所有权利.

技术支持: 八方资源网 免责声明 管理员入口 网站地图